Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

K. R. Krishnapriya, ${ }^{\text {a }}$

N. Sampath, ${ }^{\text {b }}$ S. Aravindhan, ${ }^{\text {b }}$
M. N. Ponnuswamy ${ }^{\text {b }}$ * and M. Kandaswamy ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India, and ${ }^{\mathbf{b}}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India

Correspondence e-mail:
mnpsy2004@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.059$
$w R$ factor $=0.198$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,4-Bis(pyridine-2-carbonyl)-1-(2-pyridyl)-3,5-di-p-tolylcyclohex-1-ol

In the title compound, $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3}$, the central cyclohexane ring adopts a chair conformation. The molecular structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\pi-\pi$ interactions. Interestingly, $\pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ weak interactions play a major role in the crystal packing.

Comment

The crystal structure determination of the title compound, (I), was carried out in order to elucidate the molecular conformation and hydrogen-bonding characteristics.

The cyclohexane ring adopts a chair conformation, with puckering parameters (Cremer \& Pople, 1975) $Q=$ 0.567 (4) $\AA, \theta=1.8(4)^{\circ}$ and $\varphi=353(8)^{\circ}$. The pyridine-2carbonyl group attached to C33 and the hydroxy group are in axial orientations, whereas the other substituents are attached to the cyclohexane ring in equatorial positions (Fig. 1). The C12-C17 benzene ring makes dihedral angles of 35.3 (2) and 75.1 (2) ${ }^{\circ}$, respectively, with the $\mathrm{N} 1 / \mathrm{C} 18-\mathrm{C} 22$ and $\mathrm{N} 2 / \mathrm{C} 6-\mathrm{C} 10$ pyridine rings. The C24-C29 benzene ring makes dihedral angles of 83.8 (2) and 51.6 (2) ${ }^{\circ}$, respectively, with the $\mathrm{N} 1 / \mathrm{C} 18-$ C 22 and $\mathrm{N} 3 / \mathrm{C} 1-\mathrm{C} 5$ pyridine rings. The dihedral angle between the $\mathrm{N} 2 / \mathrm{C} 6-\mathrm{C} 10$ and $\mathrm{N} 3 / \mathrm{C} 1-\mathrm{C} 5$ pyridine rings is $21.5(2)^{\circ}$. In the cyclohexane ring, the C30-C31 [1.564 (6) \AA] $]$ and C32C33 [1.568 (5) Å] bond distances are longer than normal, due to the electron-acceptor capability of the acetylpyridine groups and strain induced by bulky substituents on the cyclohexane ring (Thomson et al., 1995; Vasilyev et al., 1990)

Received 14 October 2004 Accepted 8 November 2004 Online 20 November 2004

Figure 1
A ZORTEP (Zsolnai, 1998) plot of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Figure 2
Packing of the molecules viewed down the a axis. The dashed lines indicate the $\pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

The molecular structure is stabilized by intramolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) and a $\pi-\pi$ interaction between the N2/C6-C10 and N3/C1-C5 pyridine rings [centroid-centroid distance $=3.657(4) \AA$]. The $\pi-\pi$ and weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Desiraju, 1989) play a major role in the crystal packing (Fig. 2), in addition to van der Waals forces. The N3/C1-C5 and N2/C6-C10 pyridine rings of the glide-related molecule at $\left(\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}\right)$ are stacked with a centroid-centroid separation of 3.898 (4) \AA. A C$\mathrm{H} \cdots \pi$ interaction, $\mathrm{C} 4-\mathrm{H} 4 \cdots C g 1^{\mathrm{i}}(\mathrm{Cg} 1$ is the $\mathrm{C} 12-\mathrm{C} 17$ ring centroid), is also observed between these two molecules
(Table 2). The weak interactions result in the formation of a zigzag chain along the c axis (Fig. 2). In the chain, molecules translated by a unit along the c axis are linked via $\mathrm{C} 20-$ $\mathrm{H} 20 \cdots \mathrm{Cg} 2^{\mathrm{ii}}$ (Cg 2 is the $\mathrm{C} 24-\mathrm{C} 29$ ring centroid) interactions. Adjacent chains are interlinked through C36-H36C $\cdots C 22^{\text {iii }}$ interactions. All symmetry codes are as given in Table 2.

Experimental

p-Tolualdehyde ($0.72 \mathrm{~g}, 5.99 \mathrm{mmol}$) in ethanol (30 ml) was added dropwise to a stirred solution of $\mathrm{NaOH}(0.6 \mathrm{~g})$ in water (6 ml). 2-Acetylpyridine ($1.089 \mathrm{~g}, 8.99 \mathrm{mmol}$) was added dropwise and the solution was stirred at room temperature for 80 h . The precipitate formed during this period was filtered off and washed with water and then with diethyl ether. The crude product was recrystallized from chloroform to give colourless crystals.

Crystal data

$\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=567.66$
Monoclinic, $P 2_{1} / n$
$a=8.534$ (7) \AA
$b=34.067(10) \AA$
$c=10.458(5) \AA$
$\beta=98.91$ (5) ${ }^{\circ}$
$V=3004(3) \AA^{3}$
$Z=4$
Data collection
Enraf-Nonius CAD-4
\quad diffractometer
ω scans
Absorption correction: none
5638 measured reflections
5267 independent reflections
2164 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.198$
$S=0.94$
5267 reflections
391 parameters
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 40$
$l=-12 \rightarrow 12$
3 standard reflections every 100 reflections intensity decay: none
$D_{x}=1.255 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=2.1-25.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.41 \times 0.15 \times 0.12 \mathrm{~mm}$

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1021 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C1-N3	$1.338(5)$	C18-N1	$1.338(5)$
C5-N3	$1.328(6)$	C22-N1	$1.331(5)$
C6-N2	$1.334(5)$	C23-O2	$1.211(5)$
C6-C11	$1.499(6)$	C30-O3	$1.423(4)$
C11-O1	$1.221(5)$		
N3-C1-C30	$115.3(4)$	C13-C12-C32	$123.3(4)$
C2-C1-C30	$123.9(4)$	N1-C18-C19	$123.4(4)$
N3-C5-C4	$124.8(5)$	N1-C18-C23	$117.7(4)$
N2-C6-C7	$122.6(4)$	N1-C22-C21	$124.1(5)$
N2-C6-C11	$116.3(4)$	O2-C23-C33	$122.7(4)$
N2-C10-C9	$124.5(5)$	C18-C23-C33	$118.4(4)$
O1-C11-C31	$122.5(4)$	C29-C24-C25	$116.4(4)$
C6-C11-CC11	$117.7(4)$	C29-C24-C34	$123.8(4)$
C17-C12-C13	$116.6(4)$		
C35-C30-C31-C32	$-56.4(4)$	C32-C33-C34-C35	$52.7(4)$
C30-C31-C32-C33	$54.7(4)$	C33-C34-C35-C30	$-56.4(4)$
C31-C32-C33-C34	$-52.4(4)$	C31-C30-C35-C34	$56.7(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 3$	0.82	2.10	2.586 (5)	118
C31-H31 \cdots N2	0.98	2.43	2.887 (5)	108
C33-H33 \cdots N 1	0.98	2.38	2.890 (6)	112
$\mathrm{C} 35-\mathrm{H} 35 \mathrm{~B} \cdots \mathrm{O} 2$	0.97	2.46	3.070 (6)	121
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 1^{\text {i }}$	0.93	3.04	3.805 (6)	141
$\mathrm{C} 20-\mathrm{H} 20 \cdots \mathrm{Cg} 2{ }^{\text {ii }}$	0.93	3.04	3.824 (6)	143
$\mathrm{C} 36-\mathrm{H} 36 \mathrm{C} \cdots \mathrm{Cg} 2^{\text {iii }}$	0.96	2.94	3.685 (6)	135

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $x, y, 1+z$; (iii) $2-x,-y, 1-z \cdot C g 1$ is the $\mathrm{C} 12-\mathrm{C} 17$ ring centroid and Cg 2 is the $\mathrm{C} 24-\mathrm{C} 29$ ring centroid

The high proportion of unobserved data may be a result of the high mosaicity of the crystal. All the H atoms were positioned geometrically $(\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (parent atom).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97
(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1998) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

KRK and NS thank the University Grants Commission (UGC), India, for providing a project fellowship.

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Desiraju, G. R. (1989). Material Science Monographs, No. 54, Crystal Engineering - The Design of Organic Solids, edited by G. R. Desiraju, pp. 85-113. New York: Elsevier Science Publishers.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Thomson, A. M. W. C., Constable, E. C., Harverson, P., Phillips, D., Raithby, P. R., Powell, H. R. \& Ward, M. D. (1995). J. Chem. Res. pp. 835-841.

Vasilyev, B. K., Bagrina, N. P., Vysotskii, V. I., Lindeman, S. V. \& Struchkov, Yu. T. (1990). Acta Cryst. C46, 2265-2267.
Zsolnai, L. (1998). ZORTEP. University of Heidelberg, Germany.

